Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?
نویسندگان
چکیده
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.
منابع مشابه
Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization.
Agonist-selective actions of opioids on the desensitization of mu-opioid receptors (MORs) have been well characterized, but few if any studies have examined agonist-dependent recovery from desensitization. The outward potassium current induced by several opioids was studied using whole-cell voltage-clamp recordings in locus ceruleus neurons. A brief application of the irreversible opioid antago...
متن کاملAgonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy.
Using Xenopus laevis oocytes coexpressing mammalian mu-opioid receptors (MORs), beta-adrenergic receptor kinase 2 (beta-ARK2) [also called G protein-coupled receptor kinase (GRK3)], and beta-arrestin 2 (beta-arr 2), we compared the rates of beta-ARK2 (GRK3)- and beta-arr 2-mediated homologous receptor desensitization produced by treatment with opioid agonists of different efficacies. The respon...
متن کاملOpioid regulation of pallidal enkephalin release: bimodal effects of locally administered mu and delta opioid agonists in freely moving rats.
The globus pallidus and ventral pallidum receive dense enkephalinergic innervation from the dorsal and ventral striatum, respectively. A previous study demonstrated peripheral morphine administration to increase pallidal enkephalin release. To determine whether such opioid stimulatory effects may be mediated directly in the pallidum, in vivo microdialysis was used to study the effects of local ...
متن کاملThe delta-opioid receptor is sufficient, but not necessary, for spinal opioid-adrenergic analgesic synergy.
Spinal administration of opioid and α2-adrenergic receptor (α2AR) agonists produces analgesia, and agonists interact synergistically when coadministered. The molecular mechanism underlying this synergy is largely unknown. Pharmacological studies have identified both the delta and the mu-opioid receptors (DOR and MOR) as candidate receptors capable of interacting synergistically with α2AR agonis...
متن کاملChronic Ethanol Consumption in Rats Produces Opioid Antinociceptive Tolerance through Inhibition of Mu Opioid Receptor Endocytosis
It is well known that the mu-opioid receptor (MOR) plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the proce...
متن کامل